Essential role of ribosomal protein L11 in mediating growth inhibition-induced p53 activation.
نویسندگان
چکیده
The ribosomal protein L11 binds to and suppresses the E3 ligase function of HDM2, thus activating p53. Despite being abundant as a component of the 60S large ribosomal subunit, L11 does not induce p53 under normal growth conditions. In search of mechanisms controlling L11-HDM2 interaction, we found that the induction of p53 under growth inhibitory conditions, such as low dose of actinomycin D or serum depletion, can be significantly attenuated by knocking down L11, indicating the importance of L11 in mediating these growth inhibitory signals to p53. We show that L11 is not regulated by transcription or protein stability and its level remains relatively constant during serum starvation. However, serum starvation induces translocation of L11 from the nucleolus to the nucleoplasm, where it participates in a complex with HDM2. We propose that the nucleolus acts as a barrier to prevent L11 interacting with HDM2 during normal growth. Growth inhibition, presumably through suppression of rRNA production in the nucleolus, facilitates translocation of L11 to the nucleoplasm, thus activating p53 through inhibiting HDM2.
منابع مشابه
Mutual protection of ribosomal proteins L5 and L11 from degradation is essential for p53 activation upon ribosomal biogenesis stress.
Impairment of ribosomal biogenesis can activate the p53 protein independently of DNA damage. The ability of ribosomal proteins L5, L11, L23, L26, or S7 to bind Mdm2 and inhibit its ubiquitin ligase activity has been suggested as a critical step in p53 activation under these conditions. Here, we report that L5 and L11 are particularly important for this response. Whereas several other newly synt...
متن کاملp53, transcriptional repression and drug sensitivity
Deregulation of the cell cycle (cell division) has long been known to contribute to the induction of cancer. Similarly, disruption of protein synthesis (cell growth) has also been shown to lead to several pathological conditions including cancer. 1 The tumor suppressor p53 is pivotal in inducing cell cycle arrest in response to DNA damage, and it has recently been recognized that p53 also plays...
متن کاملInhibition of HDM2 and activation of p53 by ribosomal protein L23.
The importance of coordinating cell growth with proliferation has been recognized for a long time. The molecular basis of this relationship, however, is poorly understood. Here we show that the ribosomal protein L23 interacts with HDM2. The interaction involves the central acidic domain of HDM2 and an N-terminal domain of L23. L23 and L11, another HDM2-interacting ribosomal protein, can simulta...
متن کاملInhibition of c-Myc activity by ribosomal protein L11.
The c-Myc oncoprotein promotes cell growth by enhancing ribosomal biogenesis through upregulation of RNA polymerases I-, II-, and III-dependent transcription. Overexpression of c-Myc and aberrant ribosomal biogenesis leads to deregulated cell growth and tumorigenesis. Hence, c-Myc activity and ribosomal biogenesis must be regulated in cells. Here, we show that ribosomal protein L11, a component...
متن کاملNucleostemin: Another nucleolar "Twister" of the p53-MDM2 loop.
Several nucleolar proteins, such as ARF, ribosomal protein (RP) L5, L11, L23 and S7, have been shown to induce p53 activation by inhibiting MDM2 E3 ligase activity and consequently to trigger cell cycle arrest and/or apoptosis. Our recent study revealed another nucleolar protein called nucleostemin (NS), a nucleolar GTP binding protein, as a novel regulator of the p53-MDM2 feedback loop. Howeve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO journal
دوره 23 12 شماره
صفحات -
تاریخ انتشار 2004